J. Chem. Research (S), 2003, 335–339

Mild and efficient method for reduction of aldehydes and ketones with NaBH₄ in the presence of Dowex1-x8[†] Behzad Zeynizadeh^{a*} and Farhad Shirini^b

^aChemistry Department, Faculty of Science, Urmia University, Urmia 57154-165, Iran ^bChemistry Department, Faculty of Science, Guilan University, Rasht, Iran

Various aldehydes and ketones are reduced efficiently to alcohols with NaBH₄/ Dowex1-x8.

Keywords: reduction, NaBH₄, aldehyde, ketone, Dowex1-x8

Reduction is one of the most fundamental and useful reactions in organic synthesis. Hydride transferring agents are the most versatile reagents used for this purposes.¹ Lithium aluminum hydride and sodium borohydride are commonly used providing simple and convenient routes for the reduction of many organic functional groups.^{2,3} However, the use of these reducing agents has certain limitations. Lithium aluminum hydride is an exceedingly powerful reducing agent capable of reducing practically all-organic functional groups. Consequently, it is quite difficult to apply this reagent for the selective reduction of multifunctional molecules.² On the other hand, sodium borohydride is a milder reducing agent, primarily used for the reduction of reactive functional groups in protic solvents.^{1,3}

It is desirable to develop means for controlling the reducing power of such reagents. In fact, this has been achieved by different modifications, including hydride exchange,⁴⁻⁶ cation exchange,⁷⁻¹⁰ cation and anion exchange,¹¹⁻¹⁴ use of a combination of borohydrides with metal halides,¹⁸ Lewis acids,¹⁶ solid supports,¹⁷ and mixed solvent systems.¹⁸

In continuation of our studies on the applications of Dowex1-x8, a highly basic anion exchange resin,¹⁹ we decided to prepare a new polymeric reducing agent by replacing chlorine anions in Dowex1-x8 with BH_4^{-} . Unfortunately all attempts to achieve this failed. We have, however, found that the presence of Dowex1-x8 in the reaction mixture enhances the reducing power of NaBH₄ (Scheme 1). Herein we report the efficient reduction of aldehydes and ketones with NaBH₄ in the presence of Dowex1-x8.

The NaBH₄/Dowex1-x8 system can reduce aldehydes and ketones in THF, in good to high yields (Tables 1 and 2). The selectivity of the reduction is temperature dependent. Aldehydes are reduced at room temperature in high yields (Table 1). In order to show the chemoselectivity of the system towards various carbonyl groups we performed the reduction of acetophenone in the presence of an equimolar amount of benzaldehyde with NaBH₄/Dowex1-x8 at room temperature. The selectivity ratio for the reduction of aldehyde with respect to ketone is 100% (Scheme 2). This is a general trend for the reduction of various aldehydes in the presence of ketones (Table 3).

Investigation into the reduction of ketones with this system shows that their reductions can be carried out in refluxing THF (Table 2). These reactions need a higher molar ratio of NaBH₄ (1.5–8 mmols) and higher amounts of Dowex1-x8 (20 mg) in comparison with those required for the reduction of aldehydes (NaBH₄, 1–1.5 mmols; Dowex1-x8, 10 mg).

As shown in Table 2, less hindered ketones are reduced faster than those with steric hindrance. The actual role of Dowex1-x8 is not clear but it can be attributed to the bulk and polymeric nature of the resin, which induces a special steric selectivity in the reduction of ketones. This effect is also demonstrated by a competitive reaction between two ketones, which is indicated by the following reactions (Scheme 3). This is also a general trend for the reduction of ketones with this system (Table 3).

Scheme 3

In conclusion, we have shown that $NaBH_4$ in the presence of Dowex1-x8 easily and efficiently reduces aldehydes and ketones to their corresponding alcohols. Ease of procedure, mild reaction conditions, high yields of the products, chemoselectivity and ease of work-up make this system attractive and a useful addition to the present methods.

Experimental

General: Yields referred to isolated products. Reactions proceeded in THF at room temperature or at reflux. The products were characterised by a comparison with authentic samples (m.p. or b.p.), their ¹H-NMR, IR, MS spectra and elemental analysis.

Reduction of 4-chlorobenzaldehyde with NaBH₄ in the presence of Dowex1-x8: a typical procedure: To a solution of 4-chloro-benzaldehyde (0.14 g, 1 mmol) in THF (8 ml), Dowex1-x8 (10 mg) and NaBH₄, (0.037 g, 1 mmol) were added and the resulting mixture was stirred magnetically at room temperature for 9 min. The progress of the reaction was monitored by TLC. After completion of the reaction, methanol (3 ml) was added and the resulting crude material was purified by a silica gel column chromatography using CCl₄/Et₂O: 5/2 as eluent. Evaporation of the solvent afforded pure crystals of 4-chloro-benzyl alcohol (0.14 g, 99% yield, Table 1)(m.p.: 70–71°C; Lit.^{20a} 70–72 °C).

^{*} To receive any correspondence. E-mail: b.zeynizadeh@mail.urmia.ac.ir

[†] This is a Short Paper, there is therefore no corresponding material in J Chem. Research (M).

 $\label{eq:table1} \begin{tabular}{ll} \begin{tabular}{ll} Table 1 & Reduction of aldehydes to their alcohols with NaBH_4 in the presence of Dowex1-x8^{a,b} \end{tabular}$

Entry	Substrate	Product (a)	Molar Ratio	Time/h	Yield/% ^c	М.р. о	M.p. or B.p./°C	
			Subs./NaBH ₄			Found	Reported	
1	СНО	CH ₂ OH	1:1	0.05	96	204–205	205 ^{20a}	
2	СІСНО	Cl-CH ₂ OH	1:1	0.15	99	70–71	70–72 ^{20a}	
3	Ме-СНО	Me-CH ₂ OH	1:1.5	1.3	97	60–61	59–61 ^{20a}	
4	MeO-CHO	MeO-CH ₂ OH	1:1.5	3	99	23–25	23–25 ^{20a}	
5	но-Сно	HO-CH ₂ OH	1:1.5	0.5	92	119–121	118-122 ^{20a}	
6	H ₂ N-CHO	H ₂ N-CH ₂ OH	1:1	0.7	91	63–65	60–65 ^{20a}	
7	CHO	CH ₂ OH	1:1	1	98	79–81	79–81 ^{20a}	
8	СНО	-СН ₂ ОН	1:1	0.1	94	30–31	30–32 ^{20a}	
9		CH ₂ OH	1:1	0.03	96	70–71	70-72 ^{20a}	
10	СНО	CH_OH	1:1	0.17	92	64–65	63–65 ^{20a}	
11	МеО	MeO	1:1	0.5	99	250/723	250/723 ^{20a}	
12	СІ	Cl	1:1	0.1	97	236	237 ^{20a}	
13	HO ₂ C-CHO	HO ₂ C-CH ₂ OH	1:1	0.15	96	184–185	183–185 ^{20a}	
14	Br-CHO CHO	Br-OH CH ₂ OH	1:1	0.01	98	109–111	110–112 ^{20a}	
15	Br-CHO CHO NO	Br-CH ₂ OH OH CH ₂ OH	1:1	0.01	94	_	_	
16	MeO-CHO	MeO-CH ₂ OH	1:1	0.1	99	_	_	
17	но-Сно	HO-CH ₂ OH	1:1	0.25	91	115–116	114–115 ^{20b}	
18	OHC CHO	HOH ₂ C CH ₂ OH	1:1.2	0.1	97	_	_	
19	>-сно	→ CH ₂ OH	1:1	0.3	90	107–108	108 ^{20a}	

^aAll reactions were performed with 10mg of Dowex1-x8 in THF at room temperature. ^bDowex1-x8 which was used as powdered form. ^cYields referred to isolated products.

Entry	Substrate	Product (a)	Molar Ratio	Time/h	Yield/% ^c	M.p. or B.p./°C	
			Subs./NaBH ₄			Found	Reported
1	Ph Ph=O	Ph Ph Ph	1:3	3.2	98	66–67	65–67 ^{20a}
2	HO-COPh	HO-CH(OH)	_{Ph} 1:3	5.5	96	_	_
3	COCH	I ₃ CH(OH)	CH ₃ 1:3	2.8	99	_	—
4			1:2	1.8	94	154–155	153–154 ^{20a}
5	CI O OH	CI OH OH	1:2	0.1	91	_	_
6 ^d		-он	1:2	0.17	96	116–118	118–119 ^{20b,c}
7	0	—ОН	1:1.5	1.25	90	161	160–161 ^{20a}
8	0=	но-Он	1:2	0.34	90	98–99	98–100 ^{20a}
9	COCH	³ CH(OH)CH ₃	1:4	20	50	203/745	204/745 ^{20a}
10	CI-COCH	3 Cl-CH(OH)CH ₃	1:1.5	5	98	119/10	119/10 ^{20a}
11			1:4	20	60	51–53	50–54 ^{20a}
12	Ph CH ₃	PhCH ₃	1:2	4.3	97	129/16	128–130/16 ^{20d}
13	Ph S Ph	h Ph S OH	1:8	6	96	_	_
14	Br O O I	Br Br OH OH I HO OH	Br 1:2	0.3	93	_	_
15 ^e	Å,	А	1:4	20	60	205–207	206–208 ^{20b,e}
16	Ph-N Me COPh Me	Me Ph-N Me CH(OH)Ph	1:4	5	98	_	_
17	Aco	Aco OH	1:4	7.5	97	148–149	147–148 ^{20f}
18		OH	1:1.5	0.7	90	114/749	115/749 ^{20a}

Table 2Reduction of ketones to their alcohols with $NaBH_4$ in the presence of Dowex1-x8^{a,b}

^aAll reactions were performed with 20 mg of Dowex1-x8 in THF under reflux condition. ^bDowex1-8 which was used as powdered form. ^cYields referred to isolated products. ^d Ratio of *trans/cis* alcohols is 90:10 (by GLC analysis). ^eRatio of exo/endo alcohols is 95:5 (by GLC analysis).

Table 3 Competitive reduction of aldehydes and ketones with NaBH₄ in the presence of Dowex1-x8^a

Entry	Substrate 1	Substrate 2	Condition	Molar ratio Sub 1/Sub 2/ NaBH ₄	Dowex1-x8 /mg	Time /min	Conv.1(%) ^b	Conv.2(%) ^b
1	СНО	COCH3	RT	1:1:1	10	3	100	0
2	>СНО		RT	1:1:1	10	15	100	5
3	СНО	0=0	RT	1:1:1	10	3	100	5
4	>СНО		RT	1:1:1	10	18	100	4
5		A o	Reflux	1:1:1	20	42	100	0
6		A o	Reflux	1:1:1	20	20 hrs	50	10

^aDowex1-x8 which was used as powdered form. ^bConversions referred to GLC or TLC monitoring.

Reduction of benzophenone with NaBH₄ in the presence of Dowex1-x8: a typical procedure: To a solution of benzophenone (0.182 g, 1 mmol) in THF (8 ml) was added NaBH₄ (0.075 g, 2 mmol) and Dowex1-x8 (20 mg). The reaction mixture was heated at reflux with stirring for 3.2 h. The progress of the reaction was monitored by TLC. After completion of the reaction, methanol (3 ml) was added and the resulting crude material was purified by a silica gel column chromatography using CCl₄/Et₂O: 5/2 as eluent. Evaporation of the solvent afforded pure crystals of diphenylmethanol (0.18 g, 98% yield, Table 2)(m.p.: 66–67 °C; Lit.^{20a} 65–67 °C). Spectral data of some of the products are as follows:

15a: 4-Bromo-2,6-bis(hydroxymethyl) phenol: δ_H (60 MHz, CDCl₃): 7.3 (2H, s), 6.1 (1H, broad), 4.70 (4H, s), 2.6 (2H, broad). MS: *m/e* (70 eV), 234 (*M*⁺). Elemental analysis for C₈H₉BrO₃, found: C, 41.26; H, 3.91; Br, 34.22; calculated: C, 41.23; H, 3.89; Br, 34.28%.

16a: 5-Hydroxy-4-methoxy-2-nitrobenzyl alcohol: $\delta_{\rm H}$ (60 MHz, CDCl₃): 7.6 (1H, s), 7.1 (2H, broad), 4.8 (2H, s), 3.65 (3H, s), 2.7 (1H, broad). MS: *m/e* (70 eV): 199 (*M*⁺). Elemental analysis for C₈H₉NO₅, found: C, 48.22; H, 4.58; N, 7.08; calculated: C, 48.25; H, 4.55; N, 7.03%.

18a: 3,4-Bis(hydroxymethyl)-2,5-diphenylfurane: δ_H (60 MHz, CDCl₃): 7.45–7.0 (10H, m), 4.45 (4H, s), 2.4 (2H, broad). MS: *m/e* (70 eV): 280 (*M*⁺). Elemental analysis for $C_{18}H_{16}O_3$; found: C, 77.10; H, 5.72; calculated: C, 77.12; H, 5.75%.

2b: (4-Hydroxyphenyl)phenyl methanol: $\delta_{\rm H}$ (60 MHz, CDCl₃): 7.15–6.7 (4H, m), 7.2 (5H, s), 5.7 (2H, broad), 2.50 (1H, broad). MS: *m/e* (70 eV): 200 (*M*⁺). Elemental analysis for C₁₃H₁₂O₂, found: C, 77.92; H, 6.10; calculated: C, 77.98; H, 6.04%.

3b: 1-[(4-Phenyl)phenyl] ethanol: $\delta_{\rm H}$ (60 MHz, CDCl₃): 7.6–7.25 (9H, m), 4.65 (1H, q), 2.4 (1H, s), 1.45 (3H, d). MS: *m/e* (70 eV): 198.10 (*M*⁺). Elemental analysis for C₁₄H₁₄O; found: C, 84.85; H, 7.10; calculated: C, 84.81; H, 7.12%.

5b: (2-Chlorophenyl)(2-hydroxy-3-methylphenyl) methanol: $\delta_{\rm H}$ (60 MHz, CDCl₃): 7.2–6.7 (7H, m), 5.65 (2H, broad), 2.45 (1H, broad), 2.3 (3H, s). MS: *m/e* (70 eV): 248 (*M*⁺). Elemental analysis for C₁₄H₁₃ClO₂; found: C, 67.64; H, 5.24; Cl, 14.22; calculated: C, 67.61; H, 5.27; Cl, 14.26%.

14b: 4,6-Bis[(2-bromophenyl)hydroxymethyl]benzene-1,3-diol: $\delta_{\rm H}$ (60 MHz, CDCl₃): 7.4–7 (8H, m), 6.6 (1H, s), 6.1 (1H, s), 5.5 (2H, s), 5.1 (2H, broad), 2.8 (2H, broad). MS: *m/e* (70 eV): 481 (*M*⁺). Elemental analysis for C₂₀H₁₆Br₂O₄; found: C, 50.07; H, 3.37; Br, 33.22; calculated: C, 50.03; H, 3.36; Br, 33.28%.

16b: 3,4-Bis(hydroxyphenylmethyl)-2,5-dimethyl-1-phenyl pyrrole: δ_{H} (60 MHz, CDCl₃): 7.35 (5H, s), 7.2 (10H, s), 5.65 (2H, s), 2.8 (2H, broad), 1.9 (6H, s). MS: *m/e* (70 eV): 383 (*M*⁺). Elemental analysis for C₂₆H₂₅NO₂; found: C, 81.40; H, 6.59; N, 3.68; calculated: C, 81.43; H, 6.57; N, 3.65%.

We gratefully acknowledge partial support of this work by the research affairs of Urmia and Guilan Universities.

Received 10 July 2002; accepted 2 December 2002 Paper 02/1452

References

- (a) J. Seyden-Penne, Reductions by the Alumino and Borohydrides in Organic Synthesis, 2nd ed., Wiley-VCH, 1997;
 (b) M. Hudlicky, Reductions in Organic Chemistry, Ellis Horwood Ltd., Chichester, 1984; (c) L.F. Fieser and M. Fieser, Reagents for Organic Synthesis, John Wiley & Sons, NY, 1977, 1984, 1986, 1988.
- 2 H.O. House, *Modern Synthetic Reactions*, 2th edn., Benjamine, Menlo Park, CA, 1972.
- 3 W. Forest, *Newer Methods of Preparative Organic Chemistry*, Verlag Chemie, Gmbh, Aca Press, Vol. IV, 1968.
- 4 C.F. Nutaitis and J.E. Bernardo, *J. Org. Chem.*, 1989, **54**, 5629 and the references cited therein.
- 5 C.F. Lane, Synthesis, 1975, 135.
- 6 C.S. Rao, Tetrahedron, 1990, 46, 2195.
- 7 K. Soai and A. Ookawa, J. Org. Chem., 1986, 51, 4000.
- 8 Y. He, H. Zhao, X. Pan and S. Wang, Synth. Commun., 1989, 19, 3047.
- 9 H.C. Brown, S. Narasimhan and Y.M. Choi, J. Org. Chem., 1982, 47, 4702.
- 10 R.O. Hutchins and M. Markowitz, Tetrahedron Lett., 1980, 813.
- 11 B.C. Ranu, Synlett, 1993, 885 and the references cited therein.
- 12 B.E. Blough and F.I. Corroll, Tetrahedron Lett., 1993, 7239
- 13 H.C. Brown, B. Nazer and J.S. Cha, Synthesis, 1984, 498 and the references cited therein.
- 14 S.B. Park, K.E. Kim and E. Kwan, Bull. Korean Chem. Soc., 1988, 9, 352.
- 15 Y. Yamakawa, M. Masaki and K. Nahiro, Bull. Chem. Soc. Jpn., 1991, 64, 2730.

- 16 (a) A. Giannis and K. Sandhoff, Angew. Chem. Int. Ed. Eng., 1989, 28, 218; (b) V. Suseela and M. Periasamy, Tetrahedron, 1992, 48, 371.
- 17 N.M. Yoon and J. Choi, *Synlett*, 1993, 135.
 18 K. Soai, H. Oyamada, M. Takase and A. Ookawa, *Bull. Chem.* Soc. Jpn., 1984, 57, 1984.
- 19 F. Shirini, H. Tajik and F. Jalili, Synth. Commun., 2001, 31, 2885.
- 20 (a) Aldrich Catalogue of Fine Chemicals, 2002; (b) Dictionary of Organic Compounds, 5th Ed., Chapman & Hall, 1982; (c) E.J. Corey, M.G. Howell, A. Boston, R.L. Young and R.A. Sneen, J. Am. Chem. Soc. 1956, 78, 5036; (d) Merck Catalogue of Fine Chemicals, 2002; (e) H.C. Brown and J. Muzzio, J. Am. Chem. Soc. 1966, 88, 2811; (f) Merck Index, 12, 667.